| Diago shock the eveningtion do | stails halass hafara antaring | vous condidate information | |---|-------------------------------|----------------------------| | Please check the examination de Candidate surname | | ner names | | Pearson Edexcel
Level 3 GCE | Centre Number | Candidate Number | | Thursday 16 | May 2019 | 9 | | Afternoon | Paper Refere | ence 8FM0-25 | | Further Mathe Advanced Subsidiary Further Mathematics options 25: Further Mechanics 1 (Part of options C, E, H and J) | s | | | You must have:
Mathematical Formulae and St | atistical Tables (Green) | Total Marks | Candidates may use any calculator allowed by Pearson regulations. Calculators must not have the facility for symbolic algebra manipulation, differentiation and integration, or have retrievable mathematical formulae stored in them. ## Instructions - Use **black** ink or ball-point pen. - If pencil is used for diagrams/sketches/graphs it must be dark (HB or B). - **Fill in the boxes** at the top of this page with your name, centre number and candidate number. - Answer **all** questions and ensure that your answers to parts of questions are clearly labelled. - Answer the questions in the spaces provided there may be more space than you need. - You should show sufficient working to make your methods clear. Answers without working may not gain full credit. - Unless otherwise indicated, whenever a value of g is required, take $g = 9.8 \text{ m s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures. ## **Information** - A booklet 'Mathematical Formulae and Statistical Tables' is provided. - The total mark for this part of the examination is 40. There are 4 questions. - The marks for **each** question are shown in brackets - use this as a guide as to how much time to spend on each question. ## Advice - Read each question carefully before you start to answer it. - Try to answer every question. - Check your answers if you have time at the end. Turn over ▶ | 1. | A lorry of mass 16000 kg moves along a straight horizontal road. | | |----|---|---| | | The lorry moves at a constant speed of 25 ms ⁻¹ | | | | In an initial model for the motion of the lorry, the resistance to the motion of the lorry is modelled as having constant magnitude $16000~N$. | | | | (a) Show that the engine of the lorry is working at a rate of 400 kW. |) | | | The model for the motion of the lorry along the same road is now refined so that when the speed of the lorry along the same road is $V \text{ m s}^{-1}$, the resistance to the motion of the lorry is modelled as having magnitude 640 V newtons. | | | | Assuming that the engine of the lorry is working at the same rate of 400 kW | | | | (b) use the refined model to find the speed of the lorry when it is accelerating at $2.1~{\rm ms^{-2}}$ | | | | (6 |) | Question 1 continued | | | |----------------------|--|--| Question 1 continued | | |----------------------|--| Question 1 continued | | | |----------------------|-----------------------------|--| (Total | for Question 1 is 10 marks) | | | 2. | 2. Two particles, A and B , of masses $2m$ and $3m$ respectively, are moving on a smooth horizontal plane. The particles are moving in opposite directions towards each other along the same straight line when they collide directly. Immediately before the collision the speed of A is $2u$ and the speed of B is u . In the collision the impulse of A on B has magnitude $5mu$. | | |----|---|-----| | | (a) Find the coefficient of restitution between A and B . | (9) | | | (b) Find the total loss in kinetic energy due to the collision. | (4) | | | | | | | | | | | | | | _ | Question 2 continued | | | |----------------------|--|--| Question 2 continued | | | | |----------------------|--|--|--| Question 2 continued | | | | |----------------------|------------------------------------|--|--| /TD 4 18 0 4 2 42 1 1 | | | | | (Total for Question 2 is 13 marks) | | | | 3. | A particle, P , of mass m kg is projected with speed 5 m s ⁻¹ down a line of greatest slope of a rough plane. The plane is inclined to the horizontal at an angle α , where $\sin \alpha = \frac{3}{5}$. The total resistance to the motion of P is a force of magnitude $\frac{1}{5}mg$. | | |----|---|-----| | | Use the work-energy principle to find the speed of P at the instant when it has moved a distance 8 m down the plane from the point of projection. | | | | | (7) | Question 3 continued | | | |----------------------|-----------------------------------|--| (Total for Question 3 is 7 marks) | | | 1. Three particles, P , Q and R , are at rest on a smooth horizontal plane. The particles lie along a straight line with Q between P and R . The particles Q and R have masses m and km respectively, where k is a constant. | | |--|-----| | Particle Q is projected towards R with speed u and the particles collide directly. | | | The coefficient of restitution between each pair of particles is e . | | | (a) Find, in terms of e , the range of values of k for which there is a second collision. | (9) | | Given that the mass of P is km and that there is a second collision, | | | (b) write down, in terms of u , k and e , the speed of Q after this second collision. | (1) | Question 4 continued | |----------------------| Question 4 continued | | |----------------------|---| _ | | Question 4 continued | |----------------------| Question 4 continued | | |---|--| (Total for Question 4 is 10 marks) | | | TOTAL FOR FURTHER MECHANICS 1 IS 40 MARKS | |